B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science, vol.334, pp.928-935, 2011.

Z. G. Yang, Electrochemical energy storage for green grid, Chem. Rev, vol.111, pp.3577-3613, 2011.

D. Larcher and J. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem, vol.7, pp.19-29, 2015.

C. Grey and J. Tarascon, Sustainability and in situ monitoring in battery development, Nat. Mater, vol.16, pp.45-56, 2017.

K. Kubota and S. Komaba, Review-practical issues and future perspective for Na-ion batteries, J. Electrochem. Soc, vol.162, pp.2538-2550, 2015.

H. L. Pan, Y. S. Hu, and L. Q. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy Environ. Sci, vol.6, pp.2338-2360, 2013.

N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, Research development on sodium-ion batteries, Chem. Rev, vol.114, pp.11636-11682, 2014.

P. Wang, Y. You, Y. Yin, and Y. Guo, Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance, Adv. Energy Mater, vol.8, p.1701912, 2017.

A. Ponrouch, Towards high energy density sodium ion batteries through electrolyte optimization, Energy Environ. Sci, vol.6, pp.2361-2369, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00867678

R. Dugas, B. Zhang, P. Rozier, and J. M. Tarascon, Optimization of Na-ion battery systems based on polyanionic or layered positive electrodes and carbon anodes, J. Electrochem. Soc, vol.163, pp.867-874, 2016.

Y. U. Park, A new high-energy cathode for a Na-ion battery with ultrahigh stability, J. Am. Chem. Soc, vol.135, pp.13870-13878, 2013.

L. Mu, Prototype sodium-ion batteries using an air-stable and Co/NiFree O 3-layered metal oxide cathode, Adv. Mater, vol.27, pp.6928-6933, 2015.

R. Gover, A. Bryan, P. Burns, and J. Barker, The electrochemical insertion properties of sodium vanadium fluorophosphate, Na 3 V 2 (PO 4 ) 2 F 3. Solid State Ion, vol.177, pp.1495-1500, 2006.

K. Chihara, Cathode properties of Na 3 M 2 (PO 4 ) 2 F 3 [M = Ti, Fe, V] for sodium-ion batteries, J. Power Sources, vol.227, pp.80-85, 2013.

B. Zhang, Insertion compounds and composites made by ball milling for advanced sodium-ion batteries, Nat. Commun, vol.7, p.10308, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01276328

M. Bianchini, P. Xiao, Y. Wang, and G. Ceder, Additional sodium insertion into polyanionic cathodes for higher-energy Na-ion batteries, Adv. Energy Mater, vol.7, p.1700514, 2017.

V. Palomares, Structural evolution of mixed valent (V3 + /V4 + ) and V4 + sodium vanadium fluorophosphates as cathodes in sodium-ion batteries: comparisons, overcharging and mid-term cycling, J. Mater. Chem. A, vol.3, pp.23017-23027, 2015.

Y. U. Park, A family of high-performance cathode materials for Na-ion batteries, Na 3 (VO 1-x PO 4 ) 2 F 1+2x (0 ? x ? 1): combined first-principles and experimental study, Adv. Funct. Mater, vol.24, pp.4603-4614, 2014.

S. T. Dacek, W. D. Richards, D. A. Kitchaev, and G. Ceder, Structure and dynamics of fluorophosphate Na-ion battery cathodes, Chem. Mater, vol.28, pp.5450-5460, 2016.

G. Yan, Assessment of the electrochemical stability of carbonate-based electrolytes in Na-ion batteries, J. Electrochem. Soc, vol.165, pp.1222-1230, 2018.

M. Bianchini, Na 3 V 2 (PO 4 ) 2 F 3 revisited: a high-resolution diffraction study, Chem. Mater, vol.26, pp.4238-4247, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01060314

I. L. Matts, Explaining performance-limiting mechanisms in fluorophosphate Na-ion battery cathodes through inactive transition-metal mixing and first-principles mobility calculations, Chem. Mater, vol.27, pp.6008-6015, 2015.
DOI : 10.1021/acs.chemmater.5b02299

M. Bianchini, Comprehensive investigation of the Na 3 V 2 (PO 4 ) 2 F 3-NaV 2 (PO 4 ) 2 F 3 system by operando high resolution synchrotron X-ray diffraction, Chem. Mater, vol.27, pp.3009-3020, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01233162

Z. Liu, Local structure and dynamics in the Na ion battery positive electrode material Na 3 V 2 (PO 4 ) 2 F 3, Chem. Mater, vol.26, pp.2513-2521, 2014.
DOI : 10.1021/cm403728w

T. Broux, Comprehensive investigation of the Na 3 V 2 (PO 4 ) 2 F 3-NaV 2 (PO 4 ) 2 F 3 system by operando high resolution synchrotron X-ray diffraction, Chem. Mater, vol.28, pp.7683-7692, 2016.

M. Abbate, Soft X-ray absorption spectroscopy of vanadium oxides, J. Electron Spectros. Relat. Phenomena, vol.62, pp.185-195, 1993.
DOI : 10.1016/0368-2048(93)80014-d

A. Saracibar, A. Van-der-ven, and M. E. Arroyo-de-dompablo, Crystal structure, energetics, and electrochemistry of Li 2 FeSiO 4 polymorphs from first principles calculations, Chem. Mater, vol.24, pp.495-503, 2012.
DOI : 10.1021/cm202818u

H. Li, A promising insertion anode material for lithium-ion batteries, Adv. Energy Mater, vol.3, pp.428-432, 2013.
DOI : 10.1002/aenm.201200833

P. Serras, Electrochemical Na extraction/insertion of Na 3 V 2 O 2x (PO 4 ) 2 F 3-2x, Chem. Mater, vol.25, pp.4917-4925, 2013.
DOI : 10.1021/cm403679b

T. Broux, VIV disproportionation upon sodium extraction from Na 3 V 2 (PO 4 ) 2 F 3 observed by operando X-ray absorption spectroscopy and solid-state NMR, J. Phys. Chem. C, vol.121, pp.4103-4111, 2017.
DOI : 10.1021/acs.jpcc.6b11413

URL : https://hal.archives-ouvertes.fr/hal-01481123

J. Rodríguez-carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Phys. B, vol.192, pp.55-69, 1993.

D. Massiot, 71Ga and 69Ga nuclear magnetic resonance study of ?Ga 2 O 3 : resolution of four-and six-fold coordinated Ga sites in static conditions, Solid State Nucl. Magn. Reson, vol.4, pp.241-248, 1995.

D. Massiot, Modelling one-and two-dimensional solid-state NMR spectra, Magn. Reson. Chem, vol.40, pp.70-76, 2002.
DOI : 10.1002/mrc.984