Electrostatic Embedding To Model the Impact of Environment on Photophysical Properties of Molecular Crystals: A Self-Consistent Charge Adjustment Procedure

Abstract : A case study of 1,8-dihydroxy-2-napthaldehyde (DHNA)exhibiting an excited-state intramolecular double proton transfer resulting in photophysical properties sensitive to the surrounding environmenthas been used to assess the performance of electrostatic embedding approaches designed to accurately recover the effects of a bulk crystalline environment on calculated photophysical properties. The first approach, based on time-dependent density functional theory (TD-DFT) applied in a QM/QM′ scheme, makes use of a background point charge distribution which can accurately reproduce the exact ground-state Ewald potential of the bulk crystal. The second approach seeks to " optimize " these charges in a self-consistent manner in order to reproduce the electrostatic field produced by the environment at the excited state. Using these two approaches, both absorption and emission properties of molecular crystals, such as the position and the relative shift in the emission bands in the solid state with respect to solution, can be accurately reproduced. More generally, the results obtained show how these computationally affordable approaches can be used to predict the excited-state behavior of molecules in condensed phases, thus allowing their employment to predict or design new molecular materials with enhanced photophysical properties.
Document type :
Journal articles
Complete list of metadatas

Cited literature [13 references]  Display  Hide  Download

https://hal-enscp.archives-ouvertes.fr/hal-01534248
Contributor : Melinda Toen <>
Submitted on : Tuesday, June 13, 2017 - 10:47:55 AM
Last modification on : Friday, May 24, 2019 - 5:28:22 PM
Long-term archiving on : Tuesday, December 12, 2017 - 10:27:20 AM

File

JCTC_emb_2016.pdf
Explicit agreement for this submission

Identifiers

Citation

Liam Wilbraham, Carlo Adamo, Frédéricfrédéfrédéric Labat, Ilaria Ciofini. Electrostatic Embedding To Model the Impact of Environment on Photophysical Properties of Molecular Crystals: A Self-Consistent Charge Adjustment Procedure. Journal of Chemical Theory and Computation, American Chemical Society, 2016, 12, pp.3316 - 3324. ⟨10.1021/acs.jctc.6b00263⟩. ⟨hal-01534248⟩

Share

Metrics

Record views

340

Files downloads

206