Electrostatic Embedding To Model the Impact of Environment on Photophysical Properties of Molecular Crystals: A Self-Consistent Charge Adjustment Procedure - Archive ouverte HAL Access content directly
Journal Articles Journal of Chemical Theory and Computation Year : 2016

Electrostatic Embedding To Model the Impact of Environment on Photophysical Properties of Molecular Crystals: A Self-Consistent Charge Adjustment Procedure

(1) , (2) , (3, 4) , (5)
1
2
3
4
5

Abstract

A case study of 1,8-dihydroxy-2-napthaldehyde (DHNA)exhibiting an excited-state intramolecular double proton transfer resulting in photophysical properties sensitive to the surrounding environmenthas been used to assess the performance of electrostatic embedding approaches designed to accurately recover the effects of a bulk crystalline environment on calculated photophysical properties. The first approach, based on time-dependent density functional theory (TD-DFT) applied in a QM/QM′ scheme, makes use of a background point charge distribution which can accurately reproduce the exact ground-state Ewald potential of the bulk crystal. The second approach seeks to " optimize " these charges in a self-consistent manner in order to reproduce the electrostatic field produced by the environment at the excited state. Using these two approaches, both absorption and emission properties of molecular crystals, such as the position and the relative shift in the emission bands in the solid state with respect to solution, can be accurately reproduced. More generally, the results obtained show how these computationally affordable approaches can be used to predict the excited-state behavior of molecules in condensed phases, thus allowing their employment to predict or design new molecular materials with enhanced photophysical properties.
Fichier principal
Vignette du fichier
JCTC_emb_2016.pdf (1.8 Mo) Télécharger le fichier
Origin : Explicit agreement for this submission
Loading...

Dates and versions

hal-01534248 , version 1 (13-06-2017)

Identifiers

Cite

Liam Wilbraham, Carlo Adamo, Frédéricfrédéfrédéric Labat, Ilaria Ciofini. Electrostatic Embedding To Model the Impact of Environment on Photophysical Properties of Molecular Crystals: A Self-Consistent Charge Adjustment Procedure. Journal of Chemical Theory and Computation, 2016, 12, pp.3316 - 3324. ⟨10.1021/acs.jctc.6b00263⟩. ⟨hal-01534248⟩
211 View
264 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More