Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites - Matériaux Multi-fonctionnels et Multi-échelles Accéder directement au contenu
Article Dans Une Revue Nature Communications Année : 2019

Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites

Résumé

Halide perovskites possess enormous potential for various optoelectronic applications. Presently, a clear understanding of the interplay between the lattice and electronic effects is still elusive. Specifically, the weakly absorbing tail states and dual emission from perovskites are not satisfactorily described by existing theories based on the Urbach tail and reabsorption effect. Herein, through temperature-dependent and time-resolved spectroscopy on metal halide perovskite single crystals with organic or inorganic A-site cations, we confirm the existence of indirect tail states below the direct transition edge to arise from a dynamical Rashba splitting effect, caused by the PbBr6 octahedral thermal polar distortions at elevated temperatures. This dynamic effect is distinct from the static Rashba splitting effect, caused by non-spherical A-site cations or surface induced lattice distortions. Our findings shed fresh perspectives on the electronic-lattice relations paramount for the design and optimization of emergent perovskites, revealing broad implications for light harvesting/photo-detection and light emission/lasing applications.
Fichier principal
Vignette du fichier
s41467-019-08326-7.pdf (2.19 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02080625 , version 1 (18-06-2019)

Identifiants

Citer

Bo Wu, Haifeng Yuan, Qiang Xu, Julian Steele, David Giovanni, et al.. Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites. Nature Communications, 2019, 10 (484), ⟨10.1038/s41467-019-08326-7⟩. ⟨hal-02080625⟩
78 Consultations
66 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More