Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, EpiSciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Theses

Étude asymptotique de deux problèmes de la mécanique de fluides : formation de couches limites près des côtes rugueuses non périodiques et comportement d’ondes progressives dans le problème de Hele-Shaw

Abstract : This manuscript deals with the asymptotic analysis of two problems arising in fluid mechanics: the effect of roughness on oceanic motion taking as a starting point the single-layered quasigeostrophic equation and the mathematical description of congestion phenomena in tumor growth. First, we are interested in the impact of the irregularities of the coastline on wind-driven oceanic motion when the geometry of the coasts does not follow a specific spatial pattern. The assumption on the roughness has two main consequences in the asymptotic analysis of the quasigeostrophic model: the governing boundary layer equations are defined in infinite domains with not-decaying boundary data, and the eastern boundary layer exhibits convergence issues far from the boundary. We establish the well-posedness of the solution of the boundary layer profiles in nonlocalized Sobolev space by adding ergodicity properties and using pseudo-differential analysis. We construct an approximate solution to the original problem and analyze its convergence. In the second part of this work, we study a one-dimensional porous medium equation (PME) modeling the mechanical properties of tumor growth. We are interested in the singular ``stiff pressure law'' limit when the PME degenerates towards a free boundary problem of Hele-Shaw type. We provide a refined description of the traveling waves in the vicinity of the transition between the free domain with zero pressure and the congested domain with positive pressure and then perform a stability analysis of the traveling waves.
Document type :
Theses
Complete list of metadata

https://tel.archives-ouvertes.fr/tel-03678970
Contributor : ABES STAR :  Contact
Submitted on : Wednesday, May 25, 2022 - 4:47:26 PM
Last modification on : Thursday, May 26, 2022 - 3:48:27 AM

File

LOPEZ_RUIZ_Gabriela_these_2021...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-03678970, version 1

Citation

Gabriela López Ruiz. Étude asymptotique de deux problèmes de la mécanique de fluides : formation de couches limites près des côtes rugueuses non périodiques et comportement d’ondes progressives dans le problème de Hele-Shaw. Equations aux dérivées partielles [math.AP]. Sorbonne Université, 2021. Français. ⟨NNT : 2021SORUS347⟩. ⟨tel-03678970⟩

Share

Metrics

Record views

0

Files downloads

0