Numerical analysis on the effect of surface roughness on the mechanical fields in polycrystalline aggregates - Matériaux (MAT) Accéder directement au contenu
Article Dans Une Revue Modelling and Simulation in Materials Science and Engineering Année : 2018

Numerical analysis on the effect of surface roughness on the mechanical fields in polycrystalline aggregates

Stéphanie Basseville
  • Fonction : Auteur
  • PersonId : 957996
François Curtit
  • Fonction : Auteur
  • PersonId : 934928
Georges Cailletaud

Résumé

This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.
Fichier principal
Vignette du fichier
Guilhem_MSMSE-2018_PrePrint-HAL.pdf (9.26 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01719022 , version 1 (28-02-2018)

Identifiants

Citer

Yoann Guilhem, Stéphanie Basseville, François Curtit, Jean-Michel Stéphan, Georges Cailletaud. Numerical analysis on the effect of surface roughness on the mechanical fields in polycrystalline aggregates. Modelling and Simulation in Materials Science and Engineering, 2018, 26 (4), 045004, 19 p. ⟨10.1088/1361-651X/aab217⟩. ⟨hal-01719022⟩
166 Consultations
203 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More